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Abstract

A two-dimensional solution is presented for bending analysis of simply supported functionally graded ceramic–metal
sandwich plates. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through
the thickness, and the modulus of elasticity and Poisson�s ratio of the faces are assumed to vary according to a power-
law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an
isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and
the thickness of each layer. We derive field equations for functionally graded sandwich plates whose deformations are
governed by either the shear deformation theories or the classical theory. Displacement functions that identically satisfy
boundary conditions are used to reduce the governing equations to a set of coupled ordinary differential equations with
variable coefficients. Numerical results of the sinusoidal, third-order, first-order and classical theories are presented to
show the effect of material distribution on the deflections and stresses.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Laminated composite materials are commonly used in many kinds of engineering structures. In conven-
tional laminated composite structures, homogeneous elastic laminae are bonded together to obtain en-
hanced mechanical properties. However, the abrupt change in material properties across the interface
between different materials can result in large interlaminar stresses leading to delamination. One way to
overcome these adverse effects is to use ‘‘functionally graded materials (FGMs)’’ in which material
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properties vary continuously. This may be achieved by gradually changing the volume fraction of the con-
stituent materials, usually in the thickness direction only. This eliminates interface problems of composite
materials and thus the stress distributions are smooth.

In recent years, FGMs have gained considerable attention as a potential structural material for future
high-speed spacecraft and power generation industries. FGMs are composite materials, microscopically
inhomogeneous, in which the mechanical properties vary smoothly and continuously from one surface
to the other. This is achieved by gradually varying the volume fraction of the constituent materials. This
continuous change in composition results in graded properties of FGMs. In an FGM, the composition
and structure gradually change over volume, resulting in corresponding changes in the properties of the
material. By applying many possibilities inherent in the FGM concept, it is anticipated that materials will
be improved and new functions for them created. These novel materials were first introduced by a group of
Japanese scientists in 1984 (Yamanouchi et al., 1990; Koizumi, 1993).

In the simplest FGMs, two different material ingredients change gradually from one to the other. Dis-
continuous changes such as a stepwise gradation of the material ingredients can also be considered an
FGM. The most familiar FGM is compositionally graded from a refractory ceramic to a metal. Typically,
FGMs are made from a mixture of ceramic and metal or a combination of different materials. The ceramic
in an FGM offers thermal barrier effects and protects the metal from corrosion and oxidation, and the
FGM is toughened and strengthened by the metallic composition. FGMs are now developed for general
use as structural elements in extremely high temperature environments and different applications.

Several studies have been performed to analyze the behaviour of FG structures (Fukui and Yamanaka,
1992; Obata et al., 1992; Noda and Jin, 1993; Fukui et al., 1993; Obata and Noda, 1993, 1994; Jin and
Batra, 1996). Reiter et al. (1997) and Reiter and Dvorak (1998) have performed detailed finite element stud-
ies of discrete models containing simulated particulate and skeletal microstructures and compared results
with those computed from homogenized models in which effective properties were derived by the Mori–
Tanaka and the self-consistent methods. Lee and Yu (1998) and Lee et al. (1999) have expanded the
mechanical displacements, electric potential and the material moduli as power series in the thickness coor-
dinate and derived plate equations of different orders for FG piezoelectric disks, infinite plates and strips.
The response of FG ceramic–metal plates has been investigated by Praveen and Reddy (1998) using a plate
finite element that accounts for the transverse shear strains, rotatory inertia and moderately large rotations
in von Kármán sense. Reddy and Chin (1998) have studied the dynamic thermoelastic response of FG cyl-
inders and plates. Loy et al. (1999) have studied the vibration of FG cylindrical shells using Love�s shell
theory. Reddy (2000) has presented solutions for FG rectangular plates based on his third-order shear
deformation plate theory.

Cheng and Batra (2000a) have related the deflections of a simply supported FG polygonal plate given by
the first-order shear deformation theory and a third-order shear deformation theory to that of an equiva-
lent homogeneous Kirchhoff plate. Cheng and Batra (2000b) have also presented results for the buckling
and steady state vibrations of a simply supported FG polygonal plate based on Reddy�s plate theory. Ana-
lytical 3D solutions for plates are useful since they provide benchmark results to assess the accuracy of var-
ious 2D plate theories and finite element formulations. Cheng and Batra (2000c) have also used the method
of asymptotic expansion to study the 3D thermoelastic deformations of an FG elliptic plate. Recently, Vel
and Batra (2002) have presented an exact 3D solution for the thermoelastic deformation of FG simply sup-
ported plates of finite dimensions.

In general, FG plates do not have material properties symmetric about the mid-plane. Therefore, their
stretching and bending deformation modes are coupled. This, however, is not the case for plates or beams
symmetric about the mid-plane (Zenkour, 1999). The primary objective of this paper is to present a general
formulation for FG sandwich plates using the sinusoidal shear deformation plate theory of Zenkour
(2004a,b,c, 2005). The plate may be symmetric about the mid-plane and made from three layers. The
face layers are assumed to be ceramic–metal FGMs whereas the core layer is considered as a homogeneous
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ceramic material. As a special case, a non-symmetric FGM sandwich plate is presented. Deflections and
stresses of FGM sandwich plates are investigated using sinusoidal plate theory. Results for the classical
plate theory, the first-order and third-order shear deformation plate theories can also be obtained from
the present analysis.
2. Problem formulation

Let us consider the case of a flat sandwich plate composed of three microscopically heterogeneous layers
as shown in Fig. 1. Rectangular Cartesian coordinates xi are used to describe infinitesimal deformations of
a three-layer sandwich elastic plate occupying the region [0,a] · [0,b] · [�h/2,+h/2] in the unstressed refer-
ence configuration. The mid-plane of the composite sandwich plate is defined by x3 = 0 and its external
bounding planes being defined by x3 = ±h/2 while xa denote the in-plane coordinates. For the sake of com-
pactness, the equations will be derived in tensorial notations and specialized afterwards for the problem
under consideration. Partial differentiation will be denoted by a comma, i.e. ( ),i = o( )/oxi. The Einsteinian
summation convention will be used with Latin indices ranging from 1 to 3 and Greek indices ranging from
1 to 2.

The face layers of the sandwich plate are made of an isotropic material with material properties varying
smoothly in the x3 (thickness) direction only. The core layer is made of an isotropic homogeneous material.
The vertical positions of the bottom and top, and of the two interfaces between the layers are denoted by
h0 = �h/2, h1, h2, h3 = h/2. The effective material properties for each layer, like Young�s modulus and Pois-
son�s ratio, can be expressed as
P ðx3Þ ¼ Pm þ ðP c � PmÞV ðnÞ; ð1Þ

where Pm and Pc denote the property of the bottom and top faces of layer 1, respectively, and vice versa for
layer 3 depending on the volume fraction V(n) (n = 1,2,3). Note that Pm and Pc are, respectively, the cor-
responding properties of the metal and ceramic of the FGM sandwich plate. The volume fraction V(n)
Fig. 1. Geometry of the FGM sandwich rectangular plate.
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through the thickness of the sandwich plate faces follows a simple power-law while it equals unity in the
core layer. It reads
V ð1Þ ¼ x3 � h0
h1 � h0

� �k

; x3 2 ½h0; h1�; ð2aÞ

V ð2Þ ¼ 1; x3 2 ½h1; h2�; ð2bÞ

V ð3Þ ¼ x3 � h3
h2 � h3

� �k

; x3 2 ½h2; h3�; ð2cÞ
where k is a parameter that dictates the material variation profile through the faces thickness (the volume
fraction exponent), which takes values greater than or equal to zero. The core layer is independent of the
value of k which is a fully ceramic layer. However, the value of k equal to zero represents a fully ceramic
plate. The above power-law assumption given in Eqs. (2a) and (2c) reflects a simple rule of mixtures used to
obtain the effective properties of the ceramic–metal plate faces (see Fig. 1). Note that the volume fraction of
the metal is high near the bottom and top surfaces of the plate, and that of ceramic high near the interfaces.
In addition, Eq. (2) indicates that the top and bottom surfaces of the plate are metal-rich whereas the bot-
tom (x3 = h1) and top (x3 = h2) surfaces of the core are ceramic-rich.

The displacements of a material point located at (x1,x2,x3) in the plate may be written as (Zenkour,
2004a,b,c, 2005)
vaðxiÞ ¼ ua � x3u3;a þ Wua;

v3ðxiÞ ¼ u3;

�
ð3Þ
where ua, u3 and ua are independent of x3 and denote the displacements and rotations of transverse normal
on the plane x3 = 0, respectively. The displacement of the classical thin plate theory (CLPT) is obtained
easily by setting W(x3) = 0. The displacement of the first-order shear deformation plate theory (FSDPT)
is obtained by setting W(x3) = x3. Also, the displacement of the third-order shear deformation plate theory
(TSDPT) of Reddy (2000) is obtained by setting
Wðx3Þ ¼ x3 1� 4

3

x3
h

� �2
� �

: ð4Þ
In addition, the sinusoidal shear deformation plate theory (SSDPT) of Zenkour (2004a,b,c, 2005) is ob-
tained by setting
Wðx3Þ ¼
h
p
sin

px3
h

� �
: ð5Þ
The present SSDPT is simplified by enforcing traction-free boundary conditions at the plate faces. It con-
tains the same dependent unknowns as first- and third-order shear deformation theories, but accounts
according to cosine-law distribution of the transverse shear strains through the thickness of the plate.
No transverse shear correction factors are needed for both SSDPT and TSDPT because a correct represen-
tation of the transverse shearing strain is given.

Consistent with Eq. (3), the six strain components compatible with the displacement field display the
form:
eab ¼ eab þ x3jab þ Wgab;

ea3 ¼ W;3ea3;

e33 ¼ 0:

ð6Þ
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Here the non-vanishing strain measures eij 	 eij(xx) are expressed in terms of the displacement quantities as
eab ¼ 1

2
ðua;b þ ub;aÞ;

jab ¼ �u3;ab;

gab ¼ 1

2
ðua;b þ ub;aÞ;

ea3 ¼
1

2
ua:

ð7Þ
The stress–strain relationships accounting for transverse shear deformation in the plate coordinates, can
be expressed as
rðnÞ
ab ¼ H ðnÞ

abxqexq; rðnÞ
a3 ¼ 2EðnÞ

a3x3ex3; ð8Þ
where H ðnÞ
abxq and EðnÞ

a3x3 are the components of the elasticity tensor for a transversely-isotropic material of
layer n with the plane of isotropy x1–x2,
H ðnÞ
abxq ¼ mðnÞEðnÞ

1� m2ðnÞ
dabdxq þ G0

ðnÞðdaxdbq þ daqdbxÞ;

EðnÞ
a3x3 ¼ G0

ðnÞdax;

ð9Þ
in which E(n)(x3) and m(n)(x3) are Young�s modulus and Poisson�s ratio characterizing elastic properties in
the plane of isotropy of the nth layer and dab is Kronecker�s delta. The shear modulus G(n) characterizing
the material response under a shear load applied in the plane of isotropy, takes the form
GðnÞðx3Þ ¼
EðnÞ

2ð1þ mðnÞÞ
; ð10Þ
while G 0
(n)(x3) is the shear modulus in the plane perpendicular to the plane of isotropy. It is to be noted that

G 0
(n) = G(n) for an isotropic layer.
The principle of virtual work in the present case yields
Z h=2

�h=2

Z
X

rðnÞ
11 de11 þ rðnÞ

22 de22 þ � � �
h i

dXdx3 �
Z

X
qdu3 dX ¼ 0; ð11Þ
or
 Z
X
N 11de11 þ 2N 12de12 þ N 22de22 þM11dj11 þ 2M12dj21 þM22dj22 þ 2Q13de13 þ 2Q23de23 þ S11dg11½

þ2S12dg12 þ S22dg22 � qdu3�dX ¼ 0; ð12Þ
where Nab andMab are the basic components of stress resultants and stress couples; Sab are additional stress
couples associated with the transverse shear effects; and Qa3 are transverse shear stress resultants. They can
expressed as
ðN ab;Mab; SabÞ ¼
X3

n¼1

Z hn

hn�1

ð1; x3;WÞrðnÞ
ab dx3; ð13aÞ

Qa3 ¼
X3

n¼1

Z hn

hn�1

W;3r
ðnÞ
a3 dx3: ð13bÞ
Here hn and hn�1 are the top and bottom x3-coordinates of the nth lamina.
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3. Governing equations

The governing equations of equilibrium can be derived from Eq. (12) by integrating the displacement
gradients in eij by parts and setting the coefficients dui and dua to zero separately. Thus one can obtain
N ab;b ¼ 0; Mab;ab þ q ¼ 0; Sab;b � Qa3 ¼ 0: ð14Þ

Using Eq. (8) in Eq. (13), the stress resultants can be related to the total strains by
N ab

Mab

Sab

8><
>:

9>=
>; ¼ ð½A� � ½B�Þ

e11 þ e22
j11 þ j22

g11 þ g22

8><
>:

9>=
>;dab þ ½B�

eab

jab

gab

8><
>:

9>=
>;; Qa3 ¼ Cua; ð15Þ
where
½A� ¼
X3

n¼1

Z hn

hn�1

EðnÞ

1� m2ðnÞ

1 x3 W

x3 x23 x3W

W x3W W2

2
64

3
75dx3; ð16aÞ

½B� ¼
X3

n¼1

Z hn

hn�1

EðnÞ

1þ mðnÞ

1 x3 W

x3 x23 x3W

W x3W W2

2
64

3
75dx3; ð16bÞ

C ¼
X3

n¼1

Z hn

hn�1

G0
ðnÞðW;3Þ2 dx3: ð16cÞ
Substituting Eq. (15) into Eq. (14), we obtain the following equations for all theories,

SSDPT and TSDPT:
A11u1;11 þ
1

2
B11u1;22 þ A11 � 1

2
B11

� �
u2;12 � A12r2u3;1 þ A13u1;11 þ

1

2
B13u1;22

þ A13 � 1

2
B13

� �
u2;12 ¼ 0; ð1 $ 2Þ; ð17aÞ

A12 r2u1;1 þr2u2;2
� �

� A22r4u3 þ A23 r2u1;1 þr2u2;2

� �
þ q ¼ 0; ð17bÞ

A13u1;11 þ
1

2
B13u1;22 þ A13 � 1

2
B13

� �
u2;12 � A23r2u3;1 þ A33u1;11 þ

1

2
B33u1;22

þ A33 � 1

2
B33

� �
u2;12 � Cu1 ¼ 0; ð1 $ 2Þ; ð17cÞ
where Aij and Bij are the elements of the symmetric matrices [A] and [B], respectively. In addition, the sign
(1 M 2) indicates that from Eqs. (17a) and (17c) other equations may be obtained by interchanging the sub-
index 1 by 2 and vice versa and $2( ) = ( ),11 + ( ),22 is Laplace operator.

FSDPT:
A11ðu1;1 þ u2;2Þ;1 þ
1

2
B11ðu1;2 � u2;1Þ;2 þ A12 u1;1 þ u2;2 �r2u3

� �
;1
þ 1

2
B12ðu1;2 � u2;1Þ;2 ¼ 0; ð1 $ 2Þ;

ð18aÞ
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A12 r2u1;1 þr2u2;2
� �

þ A22 r2u1;1 þr2u2;2 �r4u3
� �

þ q ¼ 0; ð18bÞ

A12ðu1;1 þ u2;2Þ;1 þ
1

2
B12ðu1;2 � u2;1Þ;2 þ A22 u1;1 þ u2;2 �r2u3

� �
;1
þ 1

2
B22ðu1;2 � u2;1Þ;2

� CFu1 ¼ 0; ð1 $ 2Þ; ð18cÞ
where
CF ¼
X3

n¼1

Z hn

hn�1

KG0
ðnÞ dx3; ð19Þ
in which K is the shear correction factor.

CLPT:
A11ðu1;1 þ u2;2Þ;1 þ
1

2
B11ðu1;2 � u2;1Þ;2 � A12r2u3;1 ¼ 0; ð1 $ 2Þ; ð20aÞ

A12ðr2u1;1 þr2u2;2Þ � A22r4u3 þ q ¼ 0: ð20bÞ
For further computational reasons the converted expressions of the stress components are also recorded.
They read

SSDPT:
rðnÞ
11 ¼ EðnÞ

1� m2ðnÞ
u1;1 þ mðnÞu2;2 � x3 u3;11 þ mðnÞu3;22

� �
þ h

p
sin

px3
h

� �
u1;1 þ mðnÞu2;2

� �� �
; ð1 $ 2Þ;

rðnÞ
12 ¼ En

2ð1þ mnÞ
u1;2 þ u2;1 � 2x3u3;12 þ

h
p
sin

px3
h

� �
u1;2 þ u2;1

� �� �
;

rðnÞ
13 ¼ G0

ðnÞ cos
px3
h

� �
u1; ð1 $ 2Þ: ð21aÞ
TSDPT:
rðnÞ
11 ¼ EðnÞ

1� m2ðnÞ
u1;1 þ mðnÞu2;2 þ x3 ðu1 � u3;1Þ;1 þ mðnÞðu2 � u3;2Þ;2

h i
� 4

3

x33
h2

u1;1 þ mðnÞu2;2

� �� �
; ð1 $ 2Þ;

rðnÞ
12 ¼ En

2ð1þ mnÞ
u1;2 þ u2;1 þ x3 ðu1 � u3;1Þ;2 þ ðu2 � u3;2Þ;1

h i
� 4

3

x33
h2

ðu1;2 þ u2;1Þ
� �

;

rðnÞ
13 ¼ G0

ðnÞ 1� 4
x3
h

� �2
� �

u1; ð1 $ 2Þ: ð21bÞ
FSDPT:
rðnÞ
11 ¼ EðnÞ

1� m2ðnÞ
u1;1 þ mðnÞu2;2 þ x3 ðu1 � u3;1Þ;1 þ mðnÞðu2 � u3;2Þ;2

h in o
; ð1 $ 2Þ;

rðnÞ
12 ¼ En

2ð1þ mnÞ
u1;2 þ u2;1 þ x3 ðu1 � u3;1Þ;2 þ ðu2 � u3;2Þ;1

h in o
;

rðnÞ
13 ¼ G0

ðnÞu1; ð1 $ 2Þ: ð21cÞ
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CLPT:
rðnÞ
11 ¼ EðnÞ

1� m2ðnÞ
u1;1 þ mðnÞu2;2 � x3 u3;11 þ mðnÞu3;22

� �� �
; ð1 $ 2Þ;

rðnÞ
12 ¼ En

2ð1þ mnÞ
u1;2 þ u2;1 � 2x3u3;12f g: ð21dÞ
4. Exact solutions for FGMs sandwich plates

Rectangular plates are generally classified in accordance with the type of support used. We are here con-
cerned with the exact solutions of Eqs. (17), (18) and (20) for a simply supported FGM plate. The following
boundary conditions are imposed at the side edges for the shear deformation theories:
u2 ¼ u3 ¼ u2 ¼ N 11 ¼ M11 ¼ S11 ¼ 0; at x1 ¼ 0; a;

u1 ¼ u3 ¼ u1 ¼ N 22 ¼ M22 ¼ S22 ¼ 0; at x2 ¼ 0; b:
ð22aÞ
For CLPT, the boundary conditions are
u2 ¼ u3 ¼ N 11 ¼ M11 ¼ 0; at x1 ¼ 0; a;

u1 ¼ u3 ¼ N 22 ¼ M22 ¼ 0; at x2 ¼ 0; b:
ð22bÞ
To solve this problem, Navier presented the external force for the case of sinusoidally distributed load as
qðx; yÞ ¼ q0 sinðkxÞ sinðlyÞ; ð23Þ

where k = p/a, l = p/b, and q0 represents the intensity of the load at the plate center.

Following the Navier solution procedure, we assume the following solution form for (u1,u2,u3,u1,u2)
that satisfies the boundary conditions,
u1
u2
u3
u1

u2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

U 1 cosðkxÞ sinðlyÞ
U 2 sinðkxÞ cosðlyÞ
U 3 sinðkxÞ sinðlyÞ
U1 cosðkxÞ sinðlyÞ
U2 sinðkxÞ cosðlyÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð24Þ
where U1, U2, U3, U1, and U2 are arbitrary parameters to be determined subjected to the condition that the
solution in Eq. (24) satisfies the equilibrium equations, Eqs. (17), (18) and (20). Equation (24) is appropriate
for CLPT by ignoring the functions u1 and u2. Substituting Eq. (24) into Eqs. (17), (18) and (20), one
obtains
½L�fDg ¼ fF g; ð25Þ

where {D} and {F} denote the columns
fDgT ¼ fU 1;U 2;U 3;U1;U2g;
fF gT ¼ f0; 0;�q0; 0; 0g;

ð26Þ
for the shear deformation theories and denote the columns
fDgT ¼ fU 1;U 2;U 3g;
fF gT ¼ f0; 0;�q0g;

ð27Þ
for the CLPT. For all theories the elements Lij = Lji of the coefficient matrix [L] are defined in Appendix A.
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5. Several kinds of sandwich plates

Fig. 2 shows the through-the-thickness variation of the volume fraction function of the ceramic for
k = 0.02, 0.2, 1, 2, 5. Note that the core of the plate is fully ceramic while the bottom and top surfaces
of the plate are metal-rich. For constant value of Poisson�s ratio m(n) = m, one gets Bij = (1 � m)Aij. It is
to be noted that the coefficients A11, A12 and A22 are the same for all theories. The other coefficients
A13, A23 and A33 may be vanished for CLPT. For shear deformation theories, these coefficients as well
as C and CF are given directly according to Eqs. (16) and (19).

5.1. (1-2-1) FGM sandwich plate

Here the plate is symmetric, in which the core thickness equals the sum of faces thickness (see Fig. 2a).
In this case, we have
Fig. 2.
sandw
The (1
h1 ¼ �h=4; h2 ¼ h=4: ð28Þ
Variation of volume fraction function through plate thickness for various values of the power-law index k and different types of
ich plates. (a) The (1-2-1) FGM sandwich plate, (b) The (1-1-1) FGM sandwich plate, (c) The (2-1-2) FGM sandwich plate, (d)
-0-1) FGM sandwich plate.
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5.2. (1-1-1) FGM sandwich plate

As shown in Fig. 2b the plate is symmetric and made of three equal-thickness layers. So, one takes
h1 ¼ �h=6; h2 ¼ h=6: ð29Þ
5.3. (2-1-2) FGM sandwich plate

In this case the plate is also symmetric and the thickness of the core is half the face thickness. Fig. 2c
shows that
h1 ¼ �h=10; h2 ¼ h=10: ð30Þ
5.4. (1-0-1) FGM sandwich plate

In this case the plate is symmetric and made of only two equal-thickness layers, i.e. there is no core layer
(see Fig. 2d). Thus,
h1 ¼ h2 ¼ 0: ð31Þ
6. Numerical results

The static analysis is conducted for two combinations of metal and ceramic. The first set of materials
chosen is aluminum and alumina. The second combination of materials consisted of aluminum and zirco-
nia. The Young�s modulus and Poisson�s ratio, are for aluminum: 70 GPa, 0.3, alumina: 380 GPa, 0.3, and
for zirconia: 151 GPa, 0.3, respectively. For simplicity, Poisson�s ratio of aluminum, alumina and zirconia is
assigned the same value; it is equivalent to the assumption that the effective value of the shear modulus is
also derived from Eq. (1).

Numerical results are presented in terms of non-dimensional stresses and deflection. The various non-
dimensional parameters used are
center deflection �u3 :
10hE0

a2q0
u3

a
2
;
b
2

� �
;

axial stress �r11 :
10h2

a2q0
r11

a
2
;
b
2
;
h
2

� �
;

shear stress �r13 :
h
aq0

r13 0;
b
2
; 0

� �
;

thickness coordinate �x3 :
x3
h
;

where the reference value is taken as E0 = 1 GPa. Numerical results are tabulated in Tables 1–4 and plotted
in Figs. 3–9. It is assumed (unless otherwise stated) that the plate is made from aluminum–zirconia FGM
and a/h = 10, a/b = 1. The shear correction factor of FSDPT is fixed to be K = 5/6.



Table 1
Effects of volume fraction exponent on the dimensionless deflection of the FGM square plate

k Theory �u3

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

0 SSDPT 0.19605 0.19605 0.19605 0.19605 0.19605
TSDPT 0.19606 0.19606 0.19606 0.19606 0.19606
FSDPT 0.19607 0.19607 0.19607 0.19607 0.19607
CLPT 0.18560 0.18560 0.18560 0.18560 0.18560

1 SSDPT 0.32349 0.30624 0.29194 0.28082 0.27093
TSDPT 0.32358 0.30632 0.29199 0.28085 0.27094
FSDPT 0.32484 0.30750 0.29301 0.28168 0.27167
CLPT 0.31054 0.29417 0.28026 0.26920 0.25958

2 SSDPT 0.37319 0.35218 0.33280 0.31611 0.30260
TSDPT 0.37335 0.35231 0.33289 0.31617 0.30263
FSDPT 0.37514 0.35408 0.33441 0.31738 0.30370
CLPT 0.35885 0.33942 0.32067 0.30405 0.29095

5 SSDPT 0.40905 0.39160 0.37128 0.34950 0.33474
TSDPT 0.40927 0.39183 0.37145 0.34960 0.33480
FSDPT 0.41120 0.39418 0.37356 0.35123 0.33631
CLPT 0.39227 0.37789 0.35865 0.33693 0.32283

10 SSDPT 0.41750 0.40376 0.38490 0.34916 0.34119
TSDPT 0.41772 0.40407 0.38551 0.36215 0.34824
FSDPT 0.41919 0.40657 0.38787 0.36395 0.34996
CLPT 0.39876 0.38941 0.37236 0.34915 0.33612

Table 2
Effects of volume fraction exponent on the dimensionless axial stress of the FGM square plate

k Theory �r11

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

0 SSDPT 2.05452 2.05452 2.05452 2.05452 2.05452
TSDPT 2.04985 2.04985 2.04985 2.04985 2.04985
FSDPT 1.97576 1.97576 1.97576 1.97576 1.97576

1 SSDPT 1.58204 1.49859 1.42892 1.32342 1.32590
TSDPT 1.57923 1.49587 1.42617 1.32062 1.32309
FSDPT 1.53245 1.45167 1.38303 1.27749 1.28096

2 SSDPT 1.82450 1.72412 1.63025 1.47387 1.48283
TSDPT 1.82167 1.72144 1.62748 1.47095 1.47988
FSDPT 1.77085 1.67496 1.58242 1.42528 1.43580

5 SSDPT 1.99567 1.91547 1.81838 1.61477 1.64106
TSDPT 1.99272 1.91302 1.81580 1.61181 1.63814
FSDPT 1.93576 1.86479 1.76988 1.56401 1.59309

10 SSDPT 2.03360 1.97313 1.88147 1.61979 1.64851
TSDPT 2.03036 1.97126 1.88376 1.66660 1.70417
FSDPT 1.96780 1.92165 1.83754 1.61645 1.65844
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Fig. 3 shows the variation of the center deflection with side-to-thickness ratio for different type of FG
symmetric plates. We will present only the significant results or difference in the response of plates with



Table 3
Effects of volume fraction exponent on the dimensionless transverse shear stress of the FGM square plate

k Theory �r13

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

0 SSDPT 0.24618 0.24618 0.24618 0.24618 0.24618
TSDPT 0.23857 0.23857 0.23857 0.23857 0.23857
FSDPT 0.19099 0.19099 0.19099 0.19099 0.19099

1 SSDPT 0.29907 0.27774 0.26809 0.26680 0.26004
TSDPT 0.29203 0.27104 0.26117 0.25951 0.25258
FSDPT 0.26099 0.24316 0.23257 0.22762 0.22057

2 SSDPT 0.33285 0.29422 0.27807 0.27627 0.26543
TSDPT 0.32622 0.28838 0.27188 0.26939 0.25834
FSDPT 0.29731 0.26752 0.25077 0.24316 0.23257

5 SSDPT 0.39370 0.31930 0.29150 0.28895 0.27153
TSDPT 0.38634 0.31454 0.28643 0.28265 0.26512
FSDPT 0.34538 0.29731 0.27206 0.26099 0.24596

10 SSDPT 0.44147 0.33644 0.29529 0.29671 0.27676
TSDPT 0.43206 0.33242 0.29566 0.29080 0.26895
FSDPT 0.37277 0.31316 0.28299 0.26998 0.25257

Table 4
Effects of aspect ratio on the dimensionless deflection of the FGM rectangular plate (k = 2)

Scheme Theory �u3

a/b = 1/3 a/b = 0.5 a/b = 1.0 a/b = 1.5 a/b = 2.0

1-0-1 SSDPT 1.18849 0.94160 0.37319 0.14472 0.06315
TSDPT 1.18877 0.94186 0.37335 0.14481 0.06321
FSDPT 1.19200 0.94473 0.37514 0.14592 0.06393
CLPT 1.16267 0.91865 0.35885 0.13590 0.05742

2-1-2 SSDPT 1.12269 0.88933 0.35218 0.13639 0.05941
TSDPT 1.12293 0.88955 0.35231 0.13647 0.05946
FSDPT 1.12611 0.89237 0.35408 0.13756 0.06017
CLPT 1.09971 0.86891 0.33942 0.12854 0.05431

1-1-1 SSDPT 1.06080 0.84032 0.33280 0.12890 0.05615
TSDPT 1.06096 0.84046 0.33289 0.12895 0.05619
FSDPT 1.06369 0.84289 0.33441 0.12989 0.05680
CLPT 1.03895 0.82090 0.32067 0.12144 0.05131

2-2-1 SSDPT 1.00683 0.79767 0.31611 0.12256 0.05347
TSDPT 1.00694 0.79776 0.31617 0.12260 0.05349
FSDPT 1.00911 0.79969 0.31738 0.12334 0.05398
CLPT 0.98512 0.77837 0.30405 0.11514 0.04865

1-2-1 SSDPT 0.96366 0.76348 0.30260 0.11735 0.05121
TSDPT 0.96371 0.76353 0.30263 0.11737 0.05122
FSDPT 0.96563 0.76524 0.30370 0.10803 0.05165
CLPT 0.94269 0.74484 0.29095 0.11018 0.04655
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the different material combinations. For both material pairs, the deflection of the metallic plate is found to
be of the largest magnitude and that of the ceramic plate, of the smallest magnitude. All the plates with



Fig. 3. Dimensionless center deflection (�u3) as a function of side-to-thickness ratio (a/h) of an FGM sandwich plate for various values
of k and different types of sandwich plates. (a) The (1-2-1) FGM sandwich plate. (b) The (1-1-1) FGM sandwich plate. (c) The (2-1-2)
FGM sandwich plate. (d) The (1-0-1) FGM sandwich plate.
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intermediate properties undergo corresponding intermediate values of center deflection. This is expected
because the metallic plate is the one with the lowest stiffness and the ceramic plate is the one with the highest
stiffness.

Fig. 4 contains the plots of the axial stress �r11 through-the-thickness of the plate for k = 0, 1 and 2.
Under the application of the sinusoidal loading, the stresses are tensile at the top surface and compressive
at the bottom surface. The homogeneous ceramic plate (k = 0) yields the maximum compressive {tensile}
stress at the bottom {top} surface. These are the metal-rich surfaces for the FG plates (k = 1 and 2). Note
that for the different volume fraction exponents chosen, the plate corresponding to k = 2 yields the maxi-
mum compressive {tensile} stress at the bottom {top} surface of the core layer (see Fig. 4a–c). These are the
ceramic-rich surfaces in which the ceramic plates experience the minimum compressive or tensile stresses.

In Fig. 5 we have plotted the through-the-thickness distributions of the transverse shear stress �r13 using
both the shear deformation theories. The volume fraction exponent of the FG sandwich plate is taken as
k = 2. The through-the-thickness distributions of �r13 is also plotted for ceramic plate (k = 0). The maxi-
mum value occurs at a point on the mid-plane of the plate and its magnitude for FG plate is larger than
that for homogeneous ceramic plate. As is known, the FSDPT yields a constant value for transverse shear



Fig. 4. Variation of normal stress �r11 through plate thickness for various values of the power-law index k and different types of FGM
sandwich plates. (a) The (1-2-1) FGM sandwich plate, (b) The (1-1-1) FGM sandwich plate, (c) The (2-1-2) FGM sandwich plate, (d)
The (1-0-1) FGM sandwich plate.
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stresses of ceramic plate. However, for FG plates it yields values close to that given using TSDPT and
SSDPT, especially at the faces of the core layer. The FSDPT could provide more reliable shear stress in
the case of (1-0-1) FGM plate (see Fig. 5d).

For the sake of completeness, some results for (2-2-1) FGM sandwich plate are given. Here the plate is
not symmetric and the core thickness is the same as one face while it is twice the other. Therefore, in this
case we have h1 = �h/10 and h2 = 3h/10. Fig. 6 shows the through-the thickness variation of the volume
fraction of the ceramic of (2-2-1) FGM plate for k = 0.02, 0.2, 1, 2, 5. In Figs. 7 and 8 we have plotted
the through-the-thickness variations of the axial stress and transverse shear stress, respectively. The tensile
and compressive values of the axial stress, �r11 (cf. Fig. 7), are maximum at a point on the top surface of the
core layer (k = 2) and bottom surface of the plate (k = 0), respectively. The maximum value of the trans-
verse shear stress, �r13 (cf. Fig. 8), occurs as discussed before at a point on the mid-plane of the plate.

Fig. 9 shows the variation of the non-dimensional center deflection �u3 with the volume fraction exponent
k for the aluminum–alumina and aluminum–zirconia plates. The deflection of zirconia plates is larger than
the corresponding one for alumina plates. In general, the deflection increases as k increases and as the core
thickness, with respect to the total thickness of the plate, decreases.



Fig. 5. Variation of transverse shear stress �r13 through plate thickness for different types of FGM sandwich plates. (a) The (1-2-1)
FGM sandwich plate, (b) The (1-1-1) FGM sandwich plate, (c) The (2-1-2) FGM sandwich plate, (d) The (1-0-1) FGM sandwich plate.

Fig. 6. Variation of volume fraction function through plate thickness of (2-2-1) FGM sandwich plate for various values of the power-
law index k.
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Fig. 7. Variation of normal stress �r11 through plate thickness of the (2-2-1) FGM sandwich plate for various values of the power-law
index k.

Fig. 8. Variation of transverse shear stress �r13 through plate thickness of the (2-2-1) FGM sandwich plate.
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Tables 1–3 list, respectively, values of deflection �u3, axial stress �r11 and transverse shear stress �r13 for
k = 0, 1, 2, 5, 10 and different types of sandwich plates. Table 1 shows that the effect of shear deformation
is to increase the deflection. The difference between the shear deformation theories is insignificant for fully
ceramic plates. It is to be noted that the CLPT yields identical axial stresses with the FSDPT and so Table 2
lacks the results of CLPT. Table 3 shows that the transverse shear stresses as per the FSDPT may be indis-
tinguishable. In general, the fully ceramic plates give the smallest deflections and shear stresses and the larg-
est axial stresses. As the volume fraction exponent increases for FG plates, the deflection, axial stress and
shear stress will increase. While these results will decrease as the core thickness, with respect to the total
thickness of the plate, increases. In fact the non-symmetric (2-2-1) FGM plate yields the smallest axial
stresses.

Finally, the exact maximum deflections of simply supported FGM rectangular plate are compared in
Table 4 for different types of FGM sandwich plates (k = 2). In addition to the exhibited in Figs. 3 and
9, the deflection will decreases as the aspect ratio a/b increases.



Fig. 9. Dimensionless center deflection (�u3) as a function of the power-law index k for different types of FGM sandwich plates.
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7. Conclusion

A novel type of a three-layer sandwich plate of uniform thickness is developed. Each face is considered
as a FG composite material comprised of two distinct material phases, for example, a metal and a ceramic.
The gradation of properties through the thickness of the faces is assumed to be of the power-law type. The
core is considered as a fully ceramic material. The top and bottom surfaces of the plate are metal-rich while
those for the core are ceramic-rich. The static response of FGM sandwich plates is studied according to
different plate theories. The stress and displacement response of the plates have been analyzed under sinu-
soidal loading. The present SSDPT offer accurate and reliable solutions for the analysis of FG plates com-
paring with other shear deformation theories. Non-dimensional stresses and displacements are computed
for plates with two different ceramic–metal mixtures. It is seen that the basic response of the plates that
correspond to properties intermediate to that of the metal and ceramic, is necessarily lie in between that
of ceramic and metal. The axial stress is found to reach a minimum at a volume fraction exponent that de-
pends on the properties of the constituents. However, the deflection and transverse shear stress are mini-
mums for the fully ceramic plates. Thus, the gradients in material properties play an important role in
determining the response of the FGM plates. The present mixture of ceramic and metal with a continuously
varying volume fraction can be easily manufactured. This eliminates interface problems of composite mate-
rials and thus the stress distributions are smooth.
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Appendix A

The elements of the symmetric matrix [L] are given according the different theories by:

SSDPT and TSDPT:
L11 ¼ � A11k2 þ 1

2
B11l2

� �
; L12 ¼ �kl A11 � 1

2
B11

� �
; L13 ¼ kA12ðk2 þ l2Þ;

L14 ¼ � A13k2 þ 1

2
B13l2

� �
; L15 ¼ �kl A13 � 1

2
B13

� �
; L22 ¼ � A11l2 þ 1

2
B11k2

� �
;

L23 ¼ lA12ðk2 þ l2Þ; L24 ¼ L15; L25 ¼ � A13l2 þ 1

2
B13k2

� �
; L33 ¼ �A22ðk2 þ l2Þ2;

L34 ¼ kA23ðk2 þ l2Þ; L35 ¼ lA23ðk2 þ l2Þ; L44 ¼ � A33k2 þ 1

2
B33l2

� �
� C;

L45 ¼ �kl A33 � 1

2
B33

� �
; L55 ¼ � A33l2 þ 1

2
B33k2

� �
� C:
FSDPT:
L11 ¼ � A11k2 þ 1

2
B11l2

� �
; L12 ¼ �kl A11 � 1

2
B11

� �
; L13 ¼ kA12ðk2 þ l2Þ;

L14 ¼ � A12k2 þ 1

2
B12l2

� �
; L15 ¼ �kl A12 � 1

2
B12

� �
; L22 ¼ � A11l2 þ 1

2
B11k2

� �
;

L23 ¼ lA12ðk2 þ l2Þ; L24 ¼ L15; L25 ¼ � A12l2 þ 1

2
B12k2

� �
; L33 ¼ �A22ðk2 þ l2Þ2;

L34 ¼ kA22ðk2 þ l2Þ; L35 ¼ lA22ðk2 þ l2Þ; L44 ¼ � A22k2 þ 1

2
B22l2

� �
� CF ;

L45 ¼ �kl A22 � 1

2
B22

� �
; L55 ¼ � A22l2 þ 1

2
B22k2

� �
� CF :
CLPT:
L11 ¼ � A11k2 þ 1

2
B11l2

� �
; L12 ¼ �kl A11 � 1

2
B11

� �
; L13 ¼ kA12ðk2 þ l2Þ;

L22 ¼ � A11l2 þ 1

2
B11k2

� �
; L23 ¼ lA12ðk2 þ l2Þ; L33 ¼ �A22ðk2 þ l2Þ2:
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